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Abstract

Multi-dimensional Upwind Fluctuation Splitting Scheme with Mesh
Adaption for Hypersonic Viscous Flow

By
William Alfred Wood TII

Committee Chairman: Bernard Grossman

Aerospace Engineering

(ABSTRACT)

A multi-dimensional upwind fluctuation splitting scheme is developed and imple-
mented for two-dimensional and axisymmetric formulations of the Navier-Stokes equa-
tions on unstructured meshes. Key features of the scheme are the compact stencil,
full upwinding, and non-linear discretization which allow for second-order accuracy
with enforced positivity. Throughout, the fluctuation splitting scheme is compared
to a current state-of-the-art finite volume approach, a second-order, dual mesh up-
wind flux difference splitting scheme (DMFDSFV), and is shown to produce more
accurate results using fewer computer resources for a wide range of test cases. The
scalar test cases include advected shear, circular advection, non-linear advection with
coalescing shock and expansion fans, and advection-diffusion. For all scalar cases the
fluctuation splitting scheme is more accurate, and the primary mechanism for the
improved fluctuation splitting performance is shown to be the reduced production of

artificial dissipation relative to DMFDSFV. The most significant scalar result is for
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combined advection-diffusion, where the present fluctuation splitting scheme is able to
resolve the physical dissipation from the artificial dissipation on a much coarser mesh
than DMFDSFV is able to, allowing order-of-magnitude reductions in solution time.
Among the inviscid test cases the converging supersonic streams problem is notable in
that the fluctuation splitting scheme exhibits superconvergent third-order spatial ac-
curacy. For the inviscid cases of a supersonic diamond airfoil, supersonic slender cone,
and incompressible circular bump the fluctuation splitting drag coefficient errors are
typically half the DMFDSFV drag errors. However, for the incompressible inviscid
sphere the fluctuation splitting drag error is larger than for DMFDSFV. A Blasius
flat plate viscous validation case reveals a more accurate v-velocity profile for fluctu-
ation splitting, and the reduced artificial dissipation production is shown relative to
DMFDSFV. Remarkably the fluctuation splitting scheme shows grid converged skin
friction coefficients with only five points in the boundary layer for this case. A viscous
Mach 17.6 (perfect gas) cylinder case demonstrates solution monotonicity and heat
transfer capability with the fluctuation splitting scheme. While fluctuation splitting
is recommended over DMFDSFV, the difference in performance between the schemes
is not so great as to obsolete DMFDSFV. The second half of the dissertation develops
a local, compact, anisotropic unstructured mesh adaption scheme in conjunction with
the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior
for scalar problems. This alignment behavior stands in contrast to the curvature
clustering nature of the local, anisotropic unstructured adaption strategy based upon
a posteriori error estimation that is used for comparison. The characteristic align-
ment is most pronounced for linear advection, with reduced improvement seen for
the more complex non-linear advection and advection-diffusion cases. The adaption
strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equa-
tions of motion through the concept of fluctuation minimization. The system test
case for the adaption strategy is a sting mounted capsule at Mach-10 wind tunnel
conditions, considered in both two-dimensional and axisymmetric configurations. For
this complex flowfield the adaption results are disappointing since feature alignment
does not emerge from the local operations. Aggressive adaption is shown to result

in a loss of robustness for the solver, particularly in the bow shock/stagnation point
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interaction region. Reducing the adaption strength maintains solution robustness but

fails to produce significant improvement in the surface heat transfer predictions.
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Over-bars are used to represent average values. Vector symbols indicate vectors
spanning multiple spatial dimensions. Bold face is used for vectors and tensors of
systems. Subscripts of independent variables are short-hand for differentiation. Hats

denote unit vectors. Tildes denote Roe-averaged quantities.
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Chapter 1

Introduction

1.1 Objective

The present dissertation seeks to develop a next-generation numerical aerothermody-
namic predictive capability. High-fidelity flowfield solutions are sought with increased
accuracy and reduced analysis time, especially with respect to configuration changes.
This is an effort to push the state of the art for aerothermodynamic analysis capability
closer to being a usable tool for vehicle designers.

Specifically, the multi-dimensional upwinding concepts of Sidilkover[1, 2, 3] as
applied to the Euler equations of inviscid, perfect gas flows are incorporated into a
consistent treatment of viscous and heating terms to solve the Navier-Stokes equa-
tions of gas dynamics. A detailed analysis of the base algorithm is performed and
applications to several validation cases are conducted. Also, aggressive unstructured
mesh-adaption strategies are investigated in conjunction with the fluctuation splitting

scheme.

1.2 Motivation

Current proposals for future United States access-to-space systems incorporate reus-
able trans-atmospheric flight vehicles, performing a role similar to the space shuttle

orbiter, seeking to minimize recurring costs. For efficient design and operation of these
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vehicles aerothermodynamic performance predictions are required to high accuracy
and in a timely fashion.

The current computational capability to provide these aerothermodynamic per-
formance predictions for complex vehicles is severely limited by total solution times,
which include both domain discretization and flowfield evolution, measured in months.
In order for high-fidelity aerothermodynamic predictive tools to play an active role
in the design phase a leap in responsiveness must be made over the current state of
the art methods, represented by dimensionally-split approximate Riemann solvers.

An effective numerical aerothermodynamic predictive tool must be able to provide
rapid analysis of vehicle aerodynamics and control surface effectiveness. To do so
flowfield features, such as embedded shocks, shear layers, and boundary layers, must
be accurately modeled and solution domains must be easily generated for complex
shapes, allowing rapid re-calculation with respect to geometry changes.

The emphasis in aerothermodynamics on heat transfer and high-speed flows pro-
vides additional challenges with regard to the accurate resolution of boundary layers,
loss of accuracy with highly-stretched meshes, and convergence slowdowns associated
with a disparity in information speeds between nearly stagnated boundary layer flow
and hypersonic shock layers.

To make the next generation of computational aerothermodynamic predictive tools
responsive to the design phase a truly multi-dimensional, robust Navier-Stokes solver
based on general unstructured domains is required. Advanced, aggressive conver-
gence acceleration methods and the exploitation of distributed or massively parallel

architectures are mandatory.

1.3 Background

1.3.1 Fluid Dynamics Algorithms

The twin goals of improving both accuracy and efficiency have long been objectives of
the computational fluid dynamics developers. Accuracy is typically addressed through

the spatial discretization, with the Van Leer ‘Ultimate’ series of papers[4, 5] being a
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driving force throughout the 1970’s. In the domain of hypersonic applications, effi-
ciency has been improved through the temporal discretization, with MacCormack’s
work standing out on explicit predictor/corrector[6], implicit line Gauss-Seidel[7, §],
and approximate factorization schemes[9], along with a notable extension by Can-
dler to the LU-SGS scheme[10]. Several industrial solvers, such as GASP[11], have
emerged from this finite volume legacy, such as the successful CFL3D code[12].

In his landmark paper, Roe[13], building on the work of Godunov[14], introduced
an upwind, approximate-Riemann-problem solution technique for the one-dimensional
Euler equations. The Roe scheme has been extended on structured meshes to multiple
dimensions by decomposing the domain into locally one-dimensional problems aligned
with the computational coordinates. Viscous terms have been incorporated and in a
decade’s time the structured Roe scheme! for Navier-Stokes equations set the standard
for continuum aerothermodynamics[15, 16, 17, 18].

Unstructured schemes have since been developed, seeking both much greater flex-
ibility for complex geometries and a reduction in preferential solution directions
aligned with computational coordinates. Notable contributions for the unstructured
Roe schemes have been made by Barth[19, 20, 21, 22] and Whitaker[23, 24]. These
approaches, however, still rely upon a locally one-dimensional, dimensionally-split
algorithm at cell faces.

A different tack has been taken by Fey[25, 26], who has advocated the method of
transport for a true multi-dimensional treatment of the Euler equations. This method
is more an extension of flux vector splitting concepts, an approach known to be more
dissipative than flux difference splitting[17].

The advent of multi-dimensional linear advection schemes, termed fluctuation
splitting[27, 28, 29, 30, 31, 32], induced Roe to revisit his one-dimensional scheme.
The fluctuation splitting formulation is based on an unstructured triangulation and
is local to each cell, suitable for application on massively parallel computers. A
two-dimensional analog to the Roe scheme for the Euler equations has been devel-
oped based on characteristic wave decompositions[33, 34, 35, 36, 37, 38, 39, 40, 41].

Unfortunately, these wave decomposition schemes have been of limited robustness

Includes extensions of the base Roe scheme to higher-order accurate discretizations.
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and have not reached their full potential. Applications have also been made to the

shallow-water equations[42].

Taking the wave decomposition idea to the extreme, some authors have applied
fluctuation splitting to Boltzmann schemes for the Euler equations[43, 44, 45, 46].
These gas kinetic schemes are very expensive to run and show very modest improve-

ments over dimensionally-split finite volume[47].

Diffusion terms have been incorporated into scalar fluctuation splitting schemes|[21,
48] and viscous terms have been added to the wave-decomposition models to solve
Navier-Stokes problems[49, 50, 51, 52]. While the Galerkin approach to viscous terms
appears compatible with fluctuation splitting for convective terms, these schemes suf-
fer from a lack of robustness. Carette[51] states, “However, this scheme is not sat-
isfactory at present in terms of robustness and convergence, and improvements in
this respect is still subject [sic] of current research.” Even for the classical flat plate

[43

boundary layer problem Tomaich[50] reports, “...the agreement with the Blasius

solution is rather poor.”

Sidilkover, who along with Roe established a strong link between fluctuation split-
ting and upwind flux difference splitting finite volume|[3], has proposed an alternative
multi-dimensional treatment of the Euler system[l, 2]. Rather than performing a
wave decomposition to decouple the Euler equations, Sidilkover employs fluctuation
splitting to treat the system of equations as a whole unit. In doing so he has been
able to apply efficient multigrid[53, 54, 55] solution strategies to shock reflection and
channel flow problems. Advantages of Sidilkover’s method for the Euler equations in-
clude: arbitrary triangulations, stability of Gauss-Seidel relaxation on high resolution
discretization, compact stencil, second-order accuracy, and rotationally invariant ar-
tificial dissipation. Among these, Sidilkover[55] claims, “The fundamental advantage
of this approach is that it leads to a scheme that combines high-resolution and good

stability properties.”

Sidilkover’s fluctuation splitting scheme for the Euler equations has the promise
to satisfy many of the cutting-edge aerodynamic requirements. It provides a truly

multi-dimensional treatment of the governing system of equations in an unstructured,
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compact, high-order algorithm suitable to distributed and massively parallel compu-
tation. Being stable with respect to Gauss-Seidel relaxation, as opposed to Runge-
Kutta[56] marching, opens the possibility of greatly improved multigrid convergence
rates. Robustness appears to be improved relative to the wave decomposition models.

What is lacking from the scheme to be an aerothermodynamic tool are the exten-
sion to the Navier-Stokes equations, rigorous evaluation of robustness and accuracy
relative to finite volume schemes on complex geometries, analysis of the effect of grid
stretching, and critical determination of the accuracy and efficiency for heat transfer

and skin friction calculations.

1.3.2 Mesh Adaption Strategies

Solution adaptive remeshing techniques have been utilized with some success for hy-
personic flows on structured domains. A simple, effective approach developed by
Gnofto[57] utilizes a spring analogy energy minimization to align the bow shock and
cluster to the boundary layer. This approach works very well for entry forebodies, for
which it was developed, but is more difficult to apply to complex vehicle shapes. The
method also is unresponsive to embedded shocks or other shock-layer flow features.
Harvey[58, 59, 60] has developed a mesh adaption technique that is sensitive to
shock-layer features to obtain parabolized Navier-Stokes solutions over simple config-
urations, e.g. cones, using a spring analogy based on Gnoffo’s work. Unfortunately,
defining relative clustering strengths for various flow features proved difficult, and a
damaging lack of robustness is shown for three-dimensional leeside flowfields[59].
Mesh adaption on unstructured domains offers a significant benefit over structured
mesh adaption—the ability to insert and delete nodes. Much of the research in this
area has gone into global remeshing using isotropic cells[61, 62, 63, 64, 65, 66, 67].
Grids composed of (nearly) isotropic cells quickly become prohibitively large for hy-
personic applications, where the capture of essentially one-dimensional flow features,
such as shocks, results in refinement in all three dimensions. These methods typically
employ gradient clustering, using a second derivative check on some or all of the de-

pendent variables to define clustering strengths. This sort of clustering is intended
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Figure 1.1: Pictorial of “ideal” mesh for shock discontinuity (left) and mesh resulting
from gradient based clustering (right).

to reduce the interpolation error in a piecewise-linear data representation[68, 69], but
is not necessarily driven by the flow physics, and can lead to excessive clustering or
conflicting requirements in certain regions, such as a bow shock or stagnation point.
Figure 1.1 presents an illustrative pictorial based on the results of Ait-Ali-Yahia[70]
et al., where 18 cells were driven into the bow shock by gradient based clustering. A
shock is pictured on the left side of the figure with an ideal mesh for a three-point
stencil. On the right side is a mesh typically produced by gradient-based cluster-
ing, which gathers more points in the vicinity of the discontinuity without providing
sharper resolution.

More recently, impressive results using anisotropic elements have been reported
by Habashi[71, 72, 73, 74, 75, 76] et al. With that approach, all grid adaptions
are local operations, as opposed to global remeshings. Highly-stretched elements are
obtained, achieved by equating the interpolation error along each edge, again using
a spring analogy minimization. The clustering is still driven by second derivatives in
the solution.

Roe[32, 77] has applied the concept of performing global mesh adaption wia lo-
cal node movements to a scalar advection problem using fluctuation splitting. His
analysis reveals that a characteristic mesh results, with far fewer points required than
gradient based clustering would imply. His method is based on the minimization of an
objective function formed by taking derivatives of the fluctuation splitting scheme. A

differentiable high-resolution linear scheme, which cannot be monotonic[56], is chosen.



1.4. COURSE OF ACTION 7

For a complex flowfield or for systems of equations it may not be possible to achieve
a perfectly-aligned characteristic mesh, in which case the non-monotonic property
would most likely be detrimental or even fatal to the solution. Tt is not clear how
to extend the differentiahility requirement to a high-resolution, non-linear monotonic
scheme.

Another attempt at mesh alignment has been performed by Trépanier[78] et al.
While their scheme is unresponsive to characteristic lines, a wave decomposition model
is used with an inviscid cell-centered finite volume solver to produce shock alignment
of unstructured isotropic cells. Less success was demonstrated for shear alignment.
One drawback of the method is the need to explicitly detect and classify flow features,
which could hinder the extension to three dimensions. Similarly, Parikh[79] et al. use
a wave decomposition in conjunction with a cell-centered finite volume solver to drive
edge alignment, but with automated general feature detection. Unfortunately, their
approach was able to provide only extremely modest benefits, in part because there

was no mechanism for providing cell stretching.

1.4 Course of Action

A systematic approach to developing new methods is pursued. Current leading-edge
technology is embraced and developed into a complete gas dynamics solver, applicable
to reentry vehicles across their speed range. Throughout, the scientific method is
followed, where new schemes are critically evaluated against the current state of the
art.

One-dimensional scalar advection is considered first, where the common ancestry
of the upwind finite volume and fluctuation splitting paradigms is presented. Exten-
sion to the incorporation of diffusive terms is presented, followed by the treatment
of systems, for both the Euler and Navier-Stokes equations. The chapter culminates
with the current state of the art in dimensionally-split schemes. Fluctuation splitting
provides an identical discretization in one dimension.

Two-dimensional scalar advection on unstructured domains is addressed next. The

methodology for applying the dimensionally-split concepts in multiple dimensions is
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shown. The different approach of fluctuation splitting is highlighted, providing a truly
multi-dimensional treatment. A critical comparison between the upwind finite volume
and fluctuation splitting schemes for scalar equations is performed. The extension
to diffusive problems is developed, with emphasis placed on consistent incorporation
into the fluctuation splitting framework while still maintaining formal second-order
accuracy.

Novel concepts for mesh adaption are developed analytically for two-dimensional
scalar problems, based on the physics of the solution rather than gradient-based
clustering. Emphasis is placed on concepts that can be extended to systems. Demon-
strations for simple basic problems and more challenging advection-diffusion problems
are performed.

Systems in two dimensions are formulated for the Navier-Stokes equations, rep-
resenting the crux of the development of the fluctuation splitting concepts. The
treatment follows the lead of Sidilkover in treating the system as a cohesive unit,
in contrast to the wave-model simplifications of Roe and Deconinck. Specialization
to axisymmetric equations of fluid motion provide useful applications and consistent
treatment of source terms.

The mesh adaption strategies developed for scalar equations are reformulated for
the fluid dynamics systems. The resolution of flowfield features is addressed, along
with robustness and convergence of the adaption process. An automatic refinement
procedure is sought whereby the solution is converged uniformly with mesh density.

A critical aerothermodynamic evaluation of the fluctuation splitting algorithm and
mesh adaption strategies are performed using the primary case of an entry capsule
at Mach-10 wind tunnel conditions, for which prior experimental and computational

data exists.



Chapter 2
One-Dimensional Analysis

The current state of the art for solving the compressible Navier-Stokes equations,
namely upwind flux-difference-split finite volume schemes, is developed on non-uni-
form meshes in one spatial dimension. Upwind flux difference splitting, in particular
the Roe scheme[13, 80|, is considered the most accurate scheme for compressible
Navier-Stokes applications[17, 18], primarily because of the low levels of artificial
dissipation introduced through the matrix dissipation model. The particular finite
volume scheme considered in this dissertation can be described as node-based, median-
dual mesh upwind Roe flux difference splitting finite volume with limited multi-di-
mensional reconstruction, and will be abbreviated as DMFDSFEFV. for dual mesh flux
difference splitting finite volume, throughout.

The sections in this chapter progress from scalar advection to diffusion and then
to combined advection-diffusion. Treatment of scalar equations is followed by the
Euler and Navier-Stokes systems of equations. The fluctuation splitting approach is
developed in parallel with the DMFDSFV analysis, and is shown to result in identical
discretizations in one dimension.

This chapter has a threefold purpose: to introduce DMFDSFV and fluctuation
splitting basics, to develop the state of the art for the locally one-dimensional approx-
imate Riemann solver used in the finite volume algorithms, and to serve as a prelude
for the multi-dimensional analyses, where fluctuation splitting offers new capability
over the DMFDSFYV extensions.



10 CHAPTER 2. ONE-DIMENSIONAL ANALYSIS

Linear data
\— representation

Control volumes
| X | X | X ‘ and centroids
i—3 i— % i+ 3
i ° ° ° ° Nodes
TR i i+1 i+2
(boundary) (ghost)

Figure 2.1: One-dimensional finite volume domain.

2.1 Domain

In one dimension the domain considered is a discretization of the z-axis, either with
uniform or non-uniform spacing between grid nodes, which are indexed by ¢. Depen-

dent variables are stored at the nodes.

In the node-based finite volume context a median-dual control volume is con-
structed about each node by defining a cell face halfway between adjacent nodes.
This convention is depicted in Figure 2.1, with the cell faces referred to as the i%
points. In the illustrative case of Figure 2.1, the ¢ + 1 node is a boundary point, and
the corresponding cell extends only from 7 + % to 1 4+ 1. The generalized volume of
the median-dual cell is formed as 2, 1 — x; 1 for interior nodes or x;+; — x;, 1 for
the boundary point shown in Figure 2.1. If the solution at the boundary nodes is
specified, then there are two fewer interior finite volumes to solve than the number
of nodes. If the boundary nodes are updated by the interior scheme, then there is
a one-to-one correspondence between the nodes and control volumes, plus two addi-
tional numerical boundary conditions, which may be implemented with ghost nodes
(4 2 in Figure 2.1) or specified boundary fluxes. If the ghost node is used, it can be
located co-incident with the physical boundary node, and does not need to have an

associated control volume. A ghost node co-located with the physical boundary node,
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Linear data
representation

X X % ‘ Domain elements
and centroids
L7 L3 i+ 3
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. . 4 T-axis
1—1 i i+1
(boundary)

Figure 2.2: One-dimensional fluctuation splitting domain.

without an associated control volume extends more easily to multiple dimensions with
unstructured grids than would a formulation based upon physically locating the ghost
node.

Notice that for the nodal distribution depicted, which has non-uniform spac-
ing, the cell centroids, denoted by x in Figure 2.1, do not coincide with the nodes.
Barth[22] states that nodal storage in this case, referred to as mass lumping in a
finite element context, only alters the time accuracy of finite volume schemes, and
not the steady state solutions. In the present dissertation unsteady problems will
employ uniform grids, though stationary problems are free to use non-uniform node
distributions.

Notice also the piecewise-linear representation of data in the finite volume context.
Discontinuous jumps in the dependent data are allowed at cell faces.

Figure 2.2 depicts the discretization of the domain for the fluctuation splitting
approach. The data is now continuous and piecewise linear over elements defined
by the nodes. The centroids of the fluctuation splitting elements are at the same

locations as the faces of the finite volume cells. No special definition of a boundary

! The use of uniform meshes to avoid degradation of time accuracy due to mass lumping is done for
convenience. It is possible to compute cell centroids and use that location in calculations involving
cell distances. Conversely, a cell-centered, rather than node based, data storage structure could be
adopted for the finite volume discretization.
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cell is required. The length of an element is,
Cijv1 =T — o = Agx (2.1)

There are one fewer elements than nodes, and each element is associated with two
nodes. Correspondingly, each interior node is associated with two elements, while
each boundary node is associated with only one element.

The data structure for fluctuation splitting shown in Figure 2.2 resembles a cell-
centered finite volume layout, with a key difference that cell-centered finite volume
stores the solution at cell centers, as opposed to at the nodes for fluctuation splitting.
Additionally, it is emphasized that the fluctuation splitting data is C-0 continuous
whereas cell-centered finite volume would have discontinuous jumps in the data at

the cell interfaces.

2.2 Scalar Advection

A hyperbolic conservation law takes the form,

U +V-F =0 (2.2)

2

where U is the vector of conserved variables and F is the flux? of these variables.

Following Godunov[14], Eqn. 2.2 can be evaluated in an integral sense,

/Ut Q) :—/ V- FdQ (2.3)
Q Q

If the control volume, {2, is fixed in time, then,
Q

where the over-bar indicates a cell-average value. Using the divergence theorem the

flux term can be evaluated as,

/ﬁ-ﬁdsz:fﬁ-ﬁdr (2.5)
Q

r

F = F(U). For some of the

2The flux function F is a function of the dependent variables U,
F = F(u,x,y). In such cases the

scalar cases F will also be a function of the independent variables,
flux will be in a variables-separable form, F' = Az, y)u.
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where 1 is the outward unit normal to the control volume boundary, I'.

The one-dimensional scalar advection problem is obtained from Eqn. 2.2 as,
which can be written for a control cell as,

SQﬂt = _/ Fa: df} = Eeft face — Fright face <27)
Q

2.2.1 Linear Advection

Linear advection is obtained from Eqn. 2.6 by choosing F' = Au. The advection speed,

A, is taken to be constant.

DMFDSFV

Equation 2.7 is expressed for the finite volume about node ¢ with mass lumping to
the node as,
Siuit =F

71—

1 .
1+3 =5

[V

where the numerical flux, f, is a difference expression approximating the exact flux

function, F'. Choosing,
Fi+ F
fier = % (2.9)

results in a second-order central difference scheme,

The first-order upwind CIR[81] scheme is obtained by the choice,

A A A=A
fisp = 2| |Ui + 2| |Ui+1 (2.11)
Fi+Fy A
= — — —A; 2.12
) g~ (212)
giving,
. Al
Ry = —6;F + uofu (2.13)

2
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The first-order upwind is then seen to be the same as a central distribution plus an
artificial dissipation term,

Al
Py = |2—|a$u (2.14)
Second-order upwind is constructed following the MUSCL concept of Van Leer[5],

where a linear reconstruction is performed on each finite volume. The numerical flux
of Eqn. 2.11 is modified to be,

. A+|A| A—|A|
fisd = 5 ULt 5 UR (2.15)
where u is the reconstructed conserved variable on the left side of the cell face and

uR is the reconstructed variable on the right side of the cell face. Following Barth[22],
a limited reconstruction is performed on each cell as,

Uface = Uy + %(VU); : Fface

(2.16)
The gradient is evaluated as a central difference,
- Ot
Vu); = — 217
(Vu), =% (217)

The limiter function, ¢, is employed to provide monotonicity of the solution, based
upon positivity arguments. The limiter takes the form,

+(3)

Uit — U = .
— %7 q=(Vu); 7y

where,

L
2

The more restrictive of the + choices is used for 1. Some popular limiters are pre-
sented in appendix A.

The discrete numerical flux (Eqn. 2.15) expands to,

AH[A Cisat o A=A Ciig1 .
fi—}—% = % <U,Z + Y 275_{1 ()Zu> + % (ui-H — d)i_;,_l ﬁéiHu) (218)
_ Fi+ Fiy B mA» Ciit

Vi Vi
et Bl Bt (L) - 220 (7o)

1+1
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leading to,
Ri = —OZF + (I)U + R2U (219)

where the second-order correction is,

lic1i (Vi1 (R
o R IR )
biiv1 (Wi ¢ Vis1
= G (Y R ) — S (P 2.2
(5 (A — 2L () (220
The residual (Eqn. 2.19) can be rearranged as,
' 1 Vi1 Vit Yi-1
Ry = —0F — < licig—Fio — 20 Fi- bijrig— —licig— | B
8 [ Mg T T e < S " Si—l)
+ 20 Fip — &,m—wiﬂﬂm} + ®ay (2.21)
Sit1

where the artificial dissipation is now,

A Wy bi

Dy = Py+ % {_Ei—l,i?jui—Q + %l (Ciivr — Ciz1 i) Uimn
Yi—a Yiy1 s

bimrig— T livig— | wi — 5 (G — bici)
+ ( Lig T ’“SM)U Si< it 1) Uit
/y.
fi,i%—l%uﬂa] (2.22)

i1

On a uniform grid and without limiting, the second-order residual (Eqn. 2.21)

reduces to a low-truncation-error central difference minus fourth-order dissipation,

A

(—Fi—2 +6F;_1 —6F1q + Fiig) + 3 (=i + 4ty — 6u; + 41 — Uigo)
(2.23)

R, =

Co| =

Fluctuation splitting

In the fluctuation splitting framework Eqgn. 2.7 is evaluated over each domain element,

without recourse to the divergence theorem. The element fluctuation is defined as,

Q
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Assuming piecewise linear data, the fluctuation for the cell bounded by z; and x;.,
is evaluated as,
*Ti41 A
Piiv1 = _)\/ Uy db = —L; 541 )\—Zu = -A\F (2.25)
7 x ’ AzJj

i

The elemental update, the LHS of Eqn. 2.24, is formed as,

o U +Uip1 it
Saily =lij | —5—) =
t

2 (u’it + ui+1t) - ¢i,i+l (226)

Partitioning the fluctuation into halves and distributing equally to the nodes yields

the basic non-upwind elemental update formula,

iy, =t b, | e (2.27)
Assembling all the elemental contributions to the nodal updates, it is clear each
interior node will receive fluctuation signals from the elements adjacent to the left
and right. The nodal update is formed as the sum of these fluctuation contributions,

bicva,, i, b T i
2 " 2 " 2

Ui = Siuit = % + % (228)

or,

Sius, = Qi1 —2F Piit1 (2.29)

A popular nomenclature convention for Eqns. 2.27 and 2.29 is to describe the elemen-

tal distribution formula as,

&m}é—?%ﬂ~+COE,,ﬂﬂuﬁhe—?%ﬂn%COE (2.30)

where COE indicates a sum of similar contributions from other elements joining at
that node.
Expanding the nodal update formula (Eqn. 2.29),

~V,F - AF

—0; I 2.31
. 5 (231)

Siuit =

which is the identical central discretization as for DMFDSFV (Eqn. 2.10).
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An upwind scheme can be constructed by introducing artificial dissipation in order

to redistribute the fluctuation,

o = sign(\)oe (2.32)

The upwind distribution formula becomes,

_ 4 b (1 — s
Sl‘ul‘t «— ¢E 2 ¢E + COE — @Z,’L-ﬁ-l( 2 Slgn()\)> + COE
! . 1 :
Sittisn, % 4+ cOR = Zinl J;Slg”m) +COE  (2.33)

Using the fluctuation definition (Eqn. 2.25) the nodal update is obtained as,

AV A=PDAu
2 2 a

Siuit = —6Z‘F+ %éfu (234)

which is identical to the first-order upwind discretization for DMFDSFV (Eqn. 2.13).
A second-order scheme is easily obtained by adding the exact same DMFDSFV
correction, Ryy (Eqn. 2.20), to the nodal update formula (Eqn. 2.34).

2.2.2 Non-linear Advection

Non-linear advection is obtained from Eqn. 2.6 by choosing the flux to be,

F== (2.35)

Define the Jacobian of the flux,
A=F,=u (2.36)

so that,

_ L _ Oy, = Au,

T 9r  Oudz

Equation 2.6 may be rearranged in non-conservation form,

u+Fy =up+ Aug, =0 (2.37)
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DMFDSFV
Following Roe[13], the analog to the numerical flux of Eqn. 2.15 becomes,

) AL+|A|1‘+1 AR—|A|i+;
fixr = 3 fu + 5 “UR

2

A+ P Al
_ L'g S - (ur— ) (2.38)

where A is the conservative linearization of the flux Jacobian, which in this case is,

A~ :UL+UR
2

(2.39)

1+

[

A first-order upwind scheme is obtained using piecewise-constant data, v, = u;, and
ur = U;x1. A second-order upwind scheme is constructed using the linear reconstruc-

tion of Eqgn. 2.16. The first-order residual may be written explicitly as,

. |A|i+% |A‘i—%
Fluctuation splitting
The elemental fluctuation is
o = —/ EF,dQ = —/ Aug dS2 (2.41)
Q Q
Assuming piecewise-linear data Eqn. 2.41 becomes,
I _AH%AW = —A\,F (2.42)

An upwind scheme is created by introducing the artificial dissipation,
0k =sign(d,.y)0e = —[ Al A (243

The distribution formula remains,

e — O
2
P + P

Siuz, + COE

Si+1‘Ui+1t “— + COE (244)
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The nodal update is,

Gi1i T Bi1;  Piit1 — i
SA » — ’ 3 ? 3
Zult 2 _'_ 2

v.F ALy AF Al

= —— — Viu — — = A

5 ] 5 U 5 + 5 U

|A|i—l

2

2

This is the identical update formula as for DMFDSFV (Eqn. 2.40).

= —GiF -

Viu +

Aju (2.45)

Expansion shocks

The discretization of Roe’s scheme allows for non-physical expansion shocks that
violate the entropy condition. Harten and Hyman[82] proposed a commonly used
method for perturbing the wavespeeds such that entropy is satisfied and expansion
shocks are prevented. The correction is applied to any wavespeed that can go to zero

at a sonic point and takes the form,

) Aies if My > e
Ajrr A2 . (2.46)
Al : ( ‘j% +e> if [z <€
where the perturbation scale is,
¢ = max [o, (Rips = M)y i = Aipn) (2.47)

2.3 Scalar Advection-Diffusion

The governing equation for scalar advection-diffusion problems in one-dimension is,

u+ Fy = (pug)s (2.48)

2.3.1 Heat Equation

Modeling of the viscous RHS in Eqn. 2.48 begins with a consideration of the heat
equation,

w = (Uty), (2.49)
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In the finite volume framework one approach to discretizing the viscous term is to

construct a viscous flux, so that the nodal update becomes,

where,

(/ju:c)w% = [ (2.51)

N

(Vu); + (ﬁu)iH]
2

with the gradients Vu defined by Eqn. 2.17. This approach leads to a five-point

stencil.

An alternative is to use a finite element discretization, which results in a three-
point stencil. This approach is adopted both by Barth[22] and Anderson and Bon-
haus[83] in a finite volume context and by Tomaich[50] in a fluctuation splitting
context.

A Galerkin finite element discretization, using mass lumping to the nodes, is
constructed on the fluctuation splitting domain by integrating with the aid of the
finite element linear shape function v (see Bickford §4.2.2[84] or Bathe §7.2[85]),

Siug, :/Ui(uux)x ds) (2.52)
Q
Integrating by parts,
Squs, = vi(pug)|it1 — / (Vi) (prug) dQ (2.53)
Q

The shape function is the linear tent function, and is equal to zero at x;4;, eliminating
the first RHS term of Eqn. 2.53. The remaining term is integrated over each element

connecting at node ¢,
Siu;, = —Z/ Uyt dS) (2.54)
o JE

The dependent variable and shape function gradients are constant over the element,

and taking the element-average viscosity coefficient the elemental contributions are,

A;
Siuit — “ ﬁ'i-i-l + COE
Cijr T2
Ay
Sisitlis1, 4 ——"f,, 1 +COE (2.55)

Cijprn 72
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The nodal update is written,

Au Vi _ _

2.3.2 Combined Advection and Diffusion

The combined effects of advection and diffusion in the governing equation (Eqn. 2.48)
are treated by discretizing the advection terms as discussed in section 2.2 and adding
the discretization of the diffusion terms of section 2.3.1. Recall, however, that the
upwind advection discretization includes artificial dissipation, which can mask the
physical dissipation.

Perhaps the best approach for solving discretized advection-diffusion problems, as
suggested by Barth[21], is to include the maximum of either the physical diffusion
term, as defined by Eqn. 2.51 or Eqn. 2.55, or the artificial dissipation, the second
term of Eqn. 2.38 for DMFDSFV or %'E in Eqn. 2.43 for fluctuation splitting.

2.4 Systems
A hyperbolic conservation law for systems (Eqn. 2.2) is written in one dimension as,
U,+F, =0 (2.57)

A decomposition of the flux function is sought such that the system can be expressed

as a decoupled set of advection-diffusion equations.

2.4.1 Euler Equations

The one-dimensional Euler equations[86] for perfect gases, suitable for simulating
non-reacting, low-Knudson-number shock-tube flows, are written as a conservation
law (Eqn. 2.57) with,

U =< pu (2.58)
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U
F =¢ pu2+P (2.59)
puH

The Euler equations have a form similar to the non-linear advection problem.
The total energy and enthalpy are obtained from the internal energy and enthalpy,

2 2

U U
FE = — H=h+—
e+2 +2

The energy and enthalpy are related as,
h=e+?l
P
The perfect gas equation of state is,
P =pe(y—-1) (2.60)
DMFDSFV

The numerical flux remains as in Eqn. 2.38,

F . +F |A|1 L
£, = L2 R _ 2+2(UR—UL) (2.61)

Roe[13, 80] constructs the conservative linearization for the |A|, 11 matrix by intro-

Z:\/ﬁlil (2.62)
L # )

The ¢ + % state is taken to be a linear average of the parameter vector,

ducing the parameter vector,

Z, +7Zg
ity — T 9

Taking the velocity and total enthalpy from the parameter vector,

. 2
P=2 g=2 2.63
== Z. (2.63)
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and defining the Roe-density,
p =/PLPR (2.64)

the Jacobian matrix is formed as,

|A] = X[A|X! (2.65)
The eigenvalues are,
A =diag(u, u+a, u—a) (2.66)
The right eigenvectors are,
1 1 1
X(l) — u X(Q) = u-+a X(3) = U —a (267)
“2—2 H+ua H —ua

The product }N(_l(UR — Uy) results in the characteristic variables,

. 2a2dp — 2dP
X7 (Up~U1) =X7dU = o dP+ jiidu (2.68)
dP — padu
The sound speed is,
P u?
@ = Wp =y =Ne=(y-Dh=(y-1)(H - 7) (2.:69)
Also note the grouping pdu can be constructed as,
ﬁdu = ZleQ - ZQle (270)

As for the scalar case, first-order spatial accuracy is obtained by taking the right
state to be ¢ + 1 and the left state at . Higher-order accuracy is obtained using
gradient reconstruction (Eqn. 2.16) applied either to each of the conserved variables

(Eqn.2.58) or each of the primitive variables, which are,
P
v ={ 4 (2.71)
P

The nodal update is still formed as in Eqn. 2.8. The residual remains as expressed

in Eqn. 2.40, but for systems rather than scalar quantities.
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Fluctuation splitting

The Euler flux (Eqn. 2.59) can be written in terms of the parameter vector,

Z1 Zy
F = %leﬁf%lzg (2.72)
237

Further, the derivative of the flux is,

Zy A 0
dF = | =27, 17, 127, | dZ (2.73)
0 Zs Zy

By assuming a linear variation of the parameter vector on each element, the

fluctuation is obtained from Eqn. 2.41 as,

dp = —/ F, dQ = —/ F,Z,d0) = —F,\Z (2.74)
Q Q

Deconinck[36] et al. show,
F;A,Z = AAU = AF (2.75)

when the Roe-averaged forms (Eqns. 2.63 and 2.64) are used to obtain A.

An upwind scheme is constructed by adding the artificial dissipation,
G = —|Al AU (2.76)

where |A| is defined in Eqn. 2.65. Employing the same distribution formula as for
the scalar advection (Eqn. 2.44) leads to an update formula analogous to Eqn. 2.45,
showing the equivalence between DMFDSFV and fluctuation splitting for the one-
dimensional Euler equations.

Before ending the fluctuation splitting discussion, it is desired to frame the arti-

ficial dissipation in the form,

ot = sign(A,.1)e (2.77)
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The difficulty lies in defining the matrix sign(A). One approach combines Eqns. 2.65,

2.74, 2.75, 2.76, and 2.77 to form,
sign(A)A =|A| = X|A|X!

sign(A) = X|A[X—A~! = X|AJA-1X"!

(2.78)

Sidilkover|[1] offers an alternative to brute force matrix multiplications for evalu-

ating Egn. 2.78. Introduce the auxiliary variables, W, defined by the transformation,

dU = Uy dW
where,
ds
dW =< pdu
dP
with the first Riemann variable defined as,
dP
ds =dp——
a
The Jacobian of the transformation is,
1o L
Uy = | u 1 %
u? 1 u?
7T Ut

The element fluctuation (Eqn. 2.74) can be reworked,
de = —AAU = Uy U AU, U AU = Uy AAW = Upge
where &E is the fluctuation as computed for the auxiliary variables,

e = —ANW

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)
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The flux Jacobian of the auxiliary variable formulation is obtained from the conserved

flux Jacobian via the similarity transformation,
A = U} AUy = U XAX Uy = XAX! (2.86)

so the eigenvalue matrix, A (Eqn. 2.66), remains unaltered. The right eigenvectors
are obtained from Eqns. 2.67 and 2.83,

X =Uy'X

xM :!(1)1 X(Q):! 221 X<3>!Ojl (2.87)
Lo) L) L)

The inverse is easily computed to be,

1 0 0
X7t =10 £ L (2.88)
0 —5 72
The flux Jacobian is evaluated from Eqn. 2.86,
z 0 0
A=10 a 1 (2.89)
0 a® a

which corresponds to the following non-conservative form of the Euler equations,

s +us, = 0
pus+upu, + P, = 0
P, +ad’puy +uP, = 0 (2.90)

Having developed an alternative method for obtaining the elemental fluctuation
(Eqn. 2.84), the artificial dissipation can be addressed (Eqn. 2.77).

¢ = sign(A)ge = Uy Uy/'sign(A) Uy ge = Uy ot (2.91)
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where,
(EIE = U;&Sign(A)Uw(sz = Sign(jl)ggE (292)
and with the aid of Eqns. 2.78 and 2.86,

sign(A) = Uplsign(A)Uy = UprX[A|[ATIX'Uy = X|AJA1X! (2.93)

Using the eigenvalue and eigenvector definitions (Eqns. 2.66, 2.87, and 2.88) sign(.A)

is evaluated to be,

~ [sien(@) 0 0
sign(A)=| 0 Llilsign(@+a)+sign(@—a) o [sign(i+a) —sign(a—a)] | (2.94)
0  %[sign(i+a) —sign(a—a)] 1 [sign(a+a) + sign(@—a)

By considering two cases, for subsonic and supersonic conditions, Eqn. 2.94 takes on

simple forms,

o M i || > @
sign(.A) —{ M i i < d (2.95)
where,
M®“ = sign (i) ] (2.96)
and,
sign(a) 0 0
Mo = o 01 (2.97)
0 a 0

2.4.2 Navier-Stokes Equations

The Navier-Stokes equations[87, 88] for the flow of a perfect gas are written in one-
dimensional conservation law form (Eqn. 2.57) with U defined in Eqn. 2.58 and the

flux defined as,

F =F —F’ (2.98)
where the inviscid flux, F¢, is the same as the Euler flux (Eqn. 2.59). The viscous
flux is,

0
O - (2.99)

UTgy — Qx
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Using Stokes’ hypothesis the stress is,

4
Too = Fhitis (2.100)

Fourier’s law for heat flow gives,
G = —rKT, (2.101)
The thermal conductivity is related to the viscosity through the Prandtl number,
p =t (2.102)

where for air P, = 0.72[89]. The temperature is obtained from the perfect gas equation

of state,
P

f— pT\R
The inviscid flux is discretized in the manner of section 2.4.1. The contributions

(2.103)

from the viscous flux to the nodal update is obtained in a Galerkin sense using
the system analog to Eqn. 2.54. No viscous contribution is made to the continuity
equation.

Using the linear variation of the parameter vector over an element, the velocity

gradient is locally defined on an element[36, 34],

22 2, 1 . p p
(uz)E (Zl)x 5 2 21, 5 (Ajzg — A21) > u z u )
where,
2
x i T \/Pi
5oz (\//TT WH) (2.105)

is called the consistent density average. The viscous contribution to the momentum

equation can now be expressed,
4 4 -
/gvxuux dQ) = gvmﬂgAiu (2.106)
E p
The first term of the viscous energy flux is evaluated in a similar manner,

4 4 .
/—Uxuuum dQ) = —%mj@Aiu (2.107)
E 3 3 p
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The second term requires some manipulation. Begin by defining the temperature

gradient over an element,
e = (L) =2 (Be o) _ & (AP Awp (2.108)
VETA\pR), AP p) Wm\UP '

p=2° (2.109)

where,

The heat flow contribution to the viscous flux is then obtained,

' i (AP A e, @ (AP A,
/umme dQ :le_ia—< i 5”) :UJE“CZ’“—( i f) (2.110)
E YR\ P p PR\ P i

The elemental contributions from the viscous terms is similar to Egn. 2.55,

0
5 ZZ: N 520u + COE
_ 0
Sit1Uipr, _fi N ggAu +COE (2.111)
TN

As discussed for the scalar advection-diffusion equations, when solving the Navier-
Stokes equations the maximum of the viscous contribution to the nodal update and
the artificial dissipation from the inviscid flux discretization should be utilized. When

the physical viscous terms are large enough, no artificial dissipation is needed.

2.5 Finite Volume State of the Art

The one-dimensional analysis of the Navier-Stokes equations represents the state of art
for upwind flux difference split finite volume schemes. Extensions of the unstructured
finite volume method to multiple spatial dimensions relies upon solving a locally
one-dimensional approximate Riemann problem across cell faces, an approach that

looses some of the coupling present in a system of equations. Locally one-dimensional
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solution techniques also introduce preferential grid-aligned wave directions that may
not correspond with physical wave-propagation directions.

The fluctuation splitting framework approaches the governing equations from a
different perspective than finite volume, but is seen to result in identical discretiza-
tions in one dimension for the DMFDSFV scheme. However, the following chapters
show how fluctuation splitting generalizes to multiple dimensions in a more compact

and coupled manner than locally one-dimensional finite volume schemes.



Chapter 3

Two-Dimensional Scalar Analysis

Having shown the equivalence of the fluctuation splitting and DMFDSFEFV schemes
for one-dimensional domains, the extensions to two spatial dimensions are considered.

The present chapter analyzes the case for a single governing conservation law,
U+V-F =V (uVl) (3.1)

to which steady-state solutions are sought. Systems, e.g. the Navier-Stokes equations,

are deferred to a subsequent chapter.

DMFDSFYV is extended in an upwind, edge-based formulation for general unstruc-
tured meshes with a multi-dimensional reconstruction. The crucial piece of the solver
remains a locally one-dimensional approximate Riemann evaluator, as developed in
chapter 2. This locally one-dimensional treatment of the fluxes results in increased
production of artificial dissipation, particularly when discontinuities are not aligned
with the mesh[40].

The extension of the fluctuation splitting scheme to multiple dimensions takes

on the flavor of a node-based upwind residual-distribution algorithm, resulting in a

31
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greater flexibility to propagate multi-dimensional wave phenomenon without dissipa-
tion. Fluctuation splitting has a more-compact stencil than DMFDSFV for second-

»l

order accuracy and exhibits “zero cross-diffusion”" in a grid-aligned condition. Fluc-

tuation splitting is seen to grid-resolve advection-diffusion problems on coarser meshes
than DMFDSFV.

This chapter begins by defining the different elemental domain structures for
DMFDSFV and fluctuation splitting. Then formulations are developed for the two
schemes and applied to two-dimensional linear and non-linear advection model prob-
lems. Observations are made about the effects in both schemes of grid orientation
on the production of artificial dissipation. Discretizations for diffusion follow, along
with results for the heat equation. The chapter concludes with an advection-diffusion
test problem, revealing the improved accuracy and decreased solution times using
fluctuation splitting vis a vis DMFDSFV.

3.1 Domain

The DMFDSFV scheme is implemented for an edge-based data structure. The domain
is discretized on an unstructured mesh of arbitrary connectivity. Control volumes are
then constructed about each node. One common method for defining the control
volumes is to use the median-dual mesh, shown as the dashed lines in Figure 3.1.
For a triangulated domain, the generalized median-dual volume about a node equals

one-third the sum of the areas of each triangle connected at that node,

1
Si =3 Z St (3.2)
VT[T
The fluxes into and out of the control volumes are efficiently computed as a sum
of contributions distributed to the nodes from a loop over edges. For each edge,
the fluxes through the control faces to the right and to the left of the edge, Fig-

ure 3.2, are computed, with the convention that a positive flux is out of the control

L“Zero cross-diffusion” refers to the practice of adding artificial dissipation terms in the stream-
wise direction only, as opposed to adding artificial dissipation in both the streamwise and cross-
stream directions.
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. Node
=—— Unstructured grid
— — Median-dual control volume
— Outward normal
X Quadrature point
0 Current node
1 Distance-one neighbor node
2 Distance-two neighbor node
interior

2 1 1

bad
P

LA P __________ 1
] ¥ boundary

(a) Interior node. (b) Boundary node.

Figure 3.1: Finite volume computational domain for edge-based implementation.

volume surrounding the initiation node and into the control volume surrounding the
termination node. The fluxes are evaluated at the quadrature points, and data is re-
constructed from the nodes to the quadrature points, denoted by x, along the vectors
7 in Figure 3.2.

For the special case of a boundary edge, shown in Figure 3.2(b), two fluxes are
computed to the right-hand side of the edge, one for each associated node.

The DMFDSFYV scheme is referred to as a locally one-dimensional scheme because
the fundamental Riemann problem is approximately solved normal to a face, with the
solution going to either or both of two nodes only, connected by the physical mesh
edge. The mesh edge and control volume face can have an arbitrary orientation within
multi-dimensional space. The reconstruction step in general can be multi-dimension-
al.

In contrast to the edge being the fundamental computational element for DM-
FDSFV. fluctuation splitting is formulated on a multi-dimensional simplex element.
In two dimensions the simplex element is the triangle, while in three-dimensions the
simplex is a tetrahedron. A pictorial of the domain nomenclature for fluctuation

splitting is presented in Figure 3.3. Local curvilinear coordinates, (£,7), are defined
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(a) Interior edge. {(b) Boundary edge.

Figure 3.2: Flux quadrature for edge-based finite volume scheme. Solid bold line is
physical mesh, dashed lines are control-volume faces.

Figure 3.3: Elemental triangular domain for fluctuation splitting.
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on each triangle, parallel to two of the sides. A good choice of sides for the curvilinear
coordinates to minimize computer round-off error may be the two most orthogonal
sides. The fluctuation computed on a triangle may now be sent to one or more of
the three vertices (versus two for DMFDSFV), allowing for a truly multi-dimensional
distribution scheme.

By definition, all elements are interior to the domain, so no special domain dis-
cretization is needed for the boundaries with fluctuation splitting. However, numerical
boundary conditions will still need to be applied at the boundary nodes to account

for contributions from ‘ghost’ elements outside the computational domain.

3.2 Advection

Pure advection is obtained from Eqn. 3.1 when p =0,
U+V-F =0 (3.3)

This section extends the DMFDSFEFV procedure in a straight-forward manner from
the one-dimensional analysis in chapter 2. Then the fluctuation splitting method is
applied, in a formulation that now differs significantly from DMFDSFV. A tempo-
ral pseudo-time marching solution procedure follows, including a positivity analysis
yielding timestep restrictions. A statement on the boundary conditions concludes the

analytic formulations, leading to results for both linear and non-linear test cases.

3.2.1 Formulations
DMFDSFV

The traditional, locally one-dimensional, approximate Riemann solver finite volume

scheme[22] begins by integrating Eqn. 3.3 over the control volumes and applying the

/UtdQ = —f F-adl (3.4)
Q T

divergence theorem,
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Using mass lumping to the nodes, similar to an explicit finite element treat-

ment[85], the temporal evolution is evaluated on a time-invariant mesh as,
' oU; S;
Uy dQ = Si—— — — (U™ - U! 3.5
/Q ! ot At v ) (3:5)
The discretization of the convective flux, ﬁ, is performed using Barth’s imple-
mentation[22] of the upwind, locally one-dimensional, approximate Riemann solver
of Roe[13] by constructing the numerical fluxes as a combination of the flux function
and artificial dissipation,
7{ Fofdl ~ Y fraceAT = —R; (3.6)
r ,
faces
The numerical flux at the face is analogous to the one dimensional form (see Eqns. 2.12
and 2.38),

1 — —
fface = § (En + Fout) n—@ (37)
where the artificial dissipation provides the upwinding (see Eqns. 2.14 and 2.38),
1 =
¢ = §|‘4 ) ﬁ|(Uout - []m) (38)

Out and in refer to states on the outside and inside of 2 at the face. The flux

Jacobians are defined, HF* OFY
= Y= —
A BTl A oU

where A = A% + AYj, F = P9+ FYj, and the tilde indicates the conservative

(3.9)

linearizations at the cell face[13].
Piecewise linear reconstruction from the nodal unknowns to the cell faces as in
Eqn. 2.16, repeated here,

Utaee = U + VU -7 (3.10)
provides second-order spatial accuracy in smoothly-varying regions of the solution.
Median-dual gradients of the dependent variable, VU , are obtained from the un-
weighted least squares procedure outlined by Barth. Following Bruner and Wal-

ters[90], the limiter is supplied an argument equal to half the argument Barth uses,

Umin/max _ Ui
b= | —= . (3.11)
Q(VU . f‘)mm/maw

namely,
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where U™/ j5 the minimum (resp. maximum) of U; and all distance-one neighbors.
The most restrictive limiting from choosing the minimum or maximum is used.

In casting the limiter argument in this form, Bruner equates the Barth limiter
with Superbee, for a limiter argument less than or equal to one. For the full domain

of the argument, the non-symmetric Barth limiter takes the form,

0
1/)<]2> — {92 i g
q q
1

for the limiter cast as Eqn. 3.11. Many limiter functions exist, and several of the

(3.12)

(VAR SN VAN
A ="
D=

als A ar
N |—

more popular versions are detailed in appendix A.

The DMFDSFV flux evaluation needs to be performed three times for each inte-
rior triangle, once for each edge of the triangle. For linear advection at a uniform
advection speed Eqn. 3.8 requires 4 multiplication/divisions and 2 additions/sub-
tractions. Equation 3.7 requires 4 each multiplications and additions. Ignoring the
work required to compute the nodal gradients and limiter, which varies based upon
the mesh connectivity, the reconstruction, Eqn. 3.10, requires 6 multiplications and
4 additions per face. Equation 3.6 adds one more multiplication per face, bringing
the total operation count for DMFDSFV per triangle to 45 multiplications and 30

additions.

Fluctuation splitting

The Narrow Non-Linear (NNL) fluctuation splitting scheme is presented as a slight
re-interpretation of the work of Sidilkover and Roe[3]. The current interpretation
is as a volume integral over triangular elements, without recourse to the divergence
theorem. The discretized equations, however, are identical to Sidilkover’s. This form
of fluctuation splitting employs a general limiter function for determining the residual
distributions.

Integrating Eqn. 3.3 over an element, where €2 is now the area of the triangular

element,

/Ut dQ) = —/ V- FdQ (3.13)
Q Q
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For linear variation of the dependent variable over the element, the temporal evolution

is (see also Eqn. 2.26),
X s
Upd = StU; = Z-(Uh, + U, + Us,) (3.14)
Q

where Uy, Uy, and Uj correspond to the three nodes defining element €2.
Using the local curvilinear coordinates (£,7), defined in Figure 3.3, the divergence

of the convective flux can be transformed,

— — a = a —
. — XL Y=~ (F-% —(F .35 1
V-F =+ F 8x( z)+ay( 7) (3.15)
9 el
or | _ & s i (3.16)
2 & n 9
Ay vy an
V-F = &(F i)+ &(F - e+ na(F - )y +my(F - )y (3.17)

Introducing the inverse Jacobian of the coordinate transformation,

_ 25T
T = ey, — wyye = A (3.18)
and the invariants of the transformation,
. y77 - ’flli . .1'77 _ TAlle
e = 775 F0 iy =
_ Ye _ M3l X N3]
e ==53 =" 5=1 O Ly (3.19)
Eqn. 3.17 becomes,
= o 1 /. = . = bty (. < L
V-F = F (nl'Fg - ng'Fn) = E (nl-AU§ - ng-AUn) (320)

If F is linear or quadratic in U, then for a linear variation of U over the element,
/ V- FdQ = oAU+ AU (3.21)
1)

where the difference operators are AU = U, — U; and AU = Us — U, and the

advection speeds are,

[N

o = 31’&1'12(, /[D) = —g’fl;g'ff (322)
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A is now the conservative linearization over the entire triangular element[36].

The advective fluctuation can be defined,

¢:—/€JMQ (3.23)
Q
The fluctuation can be split,
¢ =t + ¢ (3.24)
where,
¢ = —alAU, ¢"=-BAU (3.25)

Following Sidilkover[1] the scheme is extended to second-order spatial accuracy

by repartitioning the fluctuation through the use of a symmetric limiter function,

¢ = ¢t + 6"p(Q) = ¢* (1 - %) (3.26)
¢ =¢" — ¢"(Q) = ¢" (1 - ¥(Q)) (3.27)
with,
= ¢ 3.28
Q = o (3.28)

In practice, if an averaging function, My, exists for the desired limiter, it is numerically
advantageous to compute My (47, —¢%) = ¢")(Q), avoiding the need to evaluate @
explicitly.

This critical step, allowing the redistribution of the fluctuation, is what principally
distinguishes the multi-dimensional fluctuation splitting scheme of Sidilkover from a
locally one-dimensional extension of Riemann solvers. There is no analog to this in
the formulations of chapter 2.

Upwinding is achieved through the introduction of the artificial dissipation terms,
¢ =sign(a)e®, ¢ = sign(3)¢"" (3.29)

Combining Eqn. 3.14 with a distribution scheme for Egn. 3.23 and summing over
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all elements, the contributions to nodal time derivatives can be written in the form,

1
Sl[]lt — §(¢*€ — ¢l€) +COF
1 1, "
Solla, 4= 50" +¢") + 5(¢" — ¢") + COE

1 7 i

or in a more compact form,

1
SiUit —

7B =6 + (~1)'6") + (~4+5i = #)(6” — (-1)'¢")]

+ COE i =1,2,3 (3.31)

where COE stands for contributions from other elements containing these nodes.

The distribution requires 4 addition/subtractions and 3 multiplication/divisions.
Upwinding requires 2 multiplications for each term of Eqgn. 3.29. Ignoring the cost of
evaluating the limiter function, as was done when counting the DMFDSFV operations,
one more multiplication and addition are performed in each of Eqns. 3.26 and 3.27 and
for each term of Eqn. 3.25. Finally, a and 5, Eqn. 3.22, each require 4 multiplications
and one addition for a total operation count of only 19 multiplications, versus 45 for
the DMFDSFV scheme. Only 10 additions per triangle are required by fluctuation
splitting, versus 30 for DMFDSFV.

3.2.2 Advective Timestep Restriction

Both schemes are formulated as either Gauss-Seidel or Jacobi time-relaxation algo-
rithms.
The nodal updates for the discrete system can be formed as a sum of contributions
from all nodes.
URA =3 U = aUi+ > oU; (3.32)
J J#L
For positivity[56] each of the coefficients in Eqn. 3.32 must be non-negative.

In the finite volume context the nodal update (Eqn. 3.32) can be rearranged into



3.2. ADVECTION 41

the form of Eqn. 3.5,

Si Si Si
Ut Uty = 2l — 1)U, + 2L . .
JFt
For the upwind, edge-based algorithm considered here, each £ 2Lte; will be related to
a positive-definite coefficient equal to zero for outflowing faces and related to the
wavespeed for inflowing faces, yielding the restriction At > 0 on the timestep. The

remaining term can be expressed,
Si
c 3.34
S =Y (3.34)
k about ¢
where the ¢, coefficients are also positive-definite, either zero for inflowing faces or re-

lated to the wavespeed for outflowing faces. Rearranging and imposing the positivity

constraint, ¢; > 0, yields the timestep restriction,

1—— o =20 (3.35)
lk about ¢
SA
At < ——2— (3.36)
Zk about ¢ Ck
For fluctuation splitting, the nodal updates are assembled from Eqn. 3.31 as,

S; _ . -
At(U”At Ul => (U = Uy) (3.37)

J#L

In this case the c¢; coefficients are formed as contributions from the fluctuations in

the triangles to both the left and the right of mesh edge 77. The positivity restriction

on At is found to have a similar form as for finite volume (Eqn. 3.36),
S;

Zj;ﬁi G

Local time-stepping based on positivity is shown to yield stable, yet non-conver-

At <

(3.38)

ging, solutions in some second-order cases (see section 3.4). Robust convergence is
obtained by using the first-order ¢’s in Eqns. 3.36 and 3.38, even for second-order-
accurate spatial discretizations. This is similar to the common practice of using a

first-order Jacobian discretization in a time-implicit scheme.
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An implicit scheme can be constructed for fluctuation splitting by linearizing the

flux in time,
Fiat — ity gt <Ut+At — Ut) (3.39)

The spatial discretization remains the same and the coefficients of the LHS of Eqn. 3.37

are changed from the scalar %; to the operator,

Si
At +ale + A, (3.40)

A full implicit scheme would require inverting the sparse matrix corresponding to
the operator of Eqn. 3.40. Since both A; and A, operators use a nearest-neighbor
compact stencil, creative re-ordering of the nodes could pack the implicit matrix into
a banded diagonal of average bandwidth 6. Another strategy is to use a variant of a
red/black coloring, here grouping the nodes into three sets because of the triangular
connectivity. The three sets of nodes would then be integrated with a line Gauss-
Seidel strategy, where the matrix to invert has been reduced to a simple diagonal form
for each set of nodes. The present dissertation does not implement a fully-implicit

temporal integration.

3.2.3 Boundary Conditions

Explicit Dirichlet inflow boundary conditions are employed. Advective outflow bound-
aries are treated for free convection through the boundary nodes, allowing boundary

nodes to be handled in the same manner as interior nodes.

3.2.4 Results
Linear

The linear advection equation is obtained from Eqn. 3.3 for a flux function F= XU,
yielding,
U, +V-(\U) =0 (3.41)
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Figure 3.4: First-order fluctuation splitting, uniform advection.

A divergence-free advection velocity is considered, such that VX =0. Equation 3.41

can then be written,

U+ X-VU =0 (3.42)

The appropriate averaged flux Jacobian for linear advection is simply A= X,
where X is evaluated at the quadrature points for DMFDSFV and at the element

centroid for fluctuation splitting.

Uniform advection

Uniform advection of the Heavyside function at —45 degrees, X = (1,—1), on a cut-
cartesian mesh is shown for first-order fluctuation splitting, second-order fluctuation
splitting, and second-order DMFDSFV in Figures 3.4-3.6, respectively. The mesh
is shown as the dashed background, and equally-spaced contours vary on [0,1], the
minimum and maximum solution values. The spread of the contour lines with spatial
evolution is indicative of the amount of dissipation introduced into the solution by

the discretization of the convective terms.
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Figure 3.5: Second-order fluctuation splitting, uniform advection.

Second-order fluctuation splitting is seen to be greatly superior to first-order, as
expected, reproducing the exact solution in this case with no introduced dissipation.
Also, fluctuation splitting represents a significant reduction in numerical diffusion ver-
sus the corresponding DMFDSFV scheme, with both results employing the Minmod

limiter.

However, the “zero cross-diffusion” results of Figure 3.5 with fluctuation splitting
are misleading. In Figure 3.7 the advection velocity has been rotated counter clock-
wise by 90 degrees on the same grid. Clearly, the artificial dissipation introduced by
the fluctuation splitting scheme has been increased.

The corresponding DMFDSFYV solution is shown in Figure 3.8. While the change
in contour spreading for the DMFDSFV scheme between Figures 3.6 and 3.8 is less
dramatic than the change in spreading for the fluctuation splitting scheme in Fig-
ures 3.5 and 3.7, the fluctuation splitting results still exhibit less diffusion than the
DMFDSFV results, comparing Figures 3.7 and 3.8.

Employing the compressive Superbee limiter with the fluctuation splitting scheme
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Figure 3.6: Second-order DMFDSFV, uniform advection.

yields the results of Figure 3.9. In this case the discontinuity is confined to a 2-3 cell
stencil, and does not grow in space. Applying the Superbee limiter to DMFDSFV
cannot eliminate all artificial dissipation for this case, as is possible with fluctuation
splitting. The DMFDSFV results (not shown) corresponding to Figure 3.9 spread the
discontinuity over four cells by the outflow boundary, with a continually broadening
trend.

However, while it is possible to use the Superbee limiter with fluctuation splitting
for this case, compressive limiters can be unstable on different grid orientations. For
example, no degree of compression is stable for the case of Figure 3.5. This potential

for instability is related to global positivity, as discussed by Sidilkover and Roe[3].

The effect of using a general unstructured grid is investigated in Figures 3.10
and 3.11. The unstructured grid in this case was generated using VGRID[91, 92].
The fluctuation splitting solution exhibits less dissipation, but is not as smooth as
the DMFDSFV solution. While the fluctuation splitting scheme preserves contact

discontinuities over larger spatial ranges than the DMFDSFV scheme, fluctuation
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Figure 3.8: Second-order DMFDSFV, uniform advection.
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Figure 3.9: Second-order fluctuation splitting with compressive limiter.

splitting does not appear to degenerate gracefully with regard to extreme coarsen-
ing of the unstructured mesh for this test case. This behavior could have negative

implications for applications employing multigrid convergence acceleration.

Circular advection
Circular advection is achieved by setting X = (y, —z). A decaying sine-wave input

profile is used,

U(z,0) = (e*sinnz)?

Results for the two schemes, using the Minmod limiter, are presented on the worse-
case cut-cartesian mesh in Figures 3.12 and 3.13. Again, the fluctuation splitting
results are considerably less diffusive than the DMFDSFV solution.

The circular-advection problem is also applied on an unstructured mesh. The
input profile for this case consists of both a top-hat function and a decaying sine

wave, allowing comparisons between the schemes for both sharp discontinuities and
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Figure 3.11: DMFDSFV on unstructured mesh.
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Figure 3.12: Fluctuation splitting, circular advection.

Figure 3.13: DMFDSFV, circular advection.
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smooth gradients. The input profile is,

(e sin(27z))? —05<z <0

0 —06<zx<-05
U(z,0) = =7

0.4 —0.8<xr<-0.6

0 —1<x<-0.8

Results for this case are displayed in Figure 3.14 for fluctuation splitting and Fig-
ure 3.15 for DMFDSFV, both using the Minmod limiter. Fluctuation splitting per-
forms significantly better at preserving the top-hat distribution. Fluctuation splitting
also does a better job of maintaining the minimum and maximum values of the sine
distribution, though both schemes do well on the smooth gradient portion of the sine

wave.

Non-linear

The non-linear advection equation is obtained from Eqn. 3.3 for the flux function

F= (%2 U). In non-conservative form the equation is written,
U,+U0U,+U, =0
A coalescing shock problem is considered, with an anti-symmetric input profile,

U(=1,y) =U(0,y) =0
U(z,0) = -2z —1onz=(-1,0)

The exact solution to this problem contains symmetric expansion fans on the sides and
a compression fan at the inflow that coalesces into a vertical shock at (z,y) = (—3, 3).

The first mesh is cut-cartesian containing 26 x 26 nodes. The fluctuation splitting
and DMFDSFV solutions, both using the Minmod limiter, are presented in Fig-
ures 3.16 and 3.17. Both algorithms exhibit the same grid dependence on the amount
of artificial dissipation as seen before, with the left-half solutions having more diffu-
sion than the right halves, due to the grid orientation. Both methods perform the
same in the compression-fan region, coalescing into a shock to within the accuracy of

the input-profile discretization.
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Figure 3.14: Fluctuation splitting on unstructured mesh, circular advection.
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Figure 3.15: DMFDSFV on unstructured mesh, circular advection.
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Figure 3.17: DMFDSFV, Burgers equation.
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The shock is more sharply defined by fluctuation splitting than by DMFDSFV.
Figure 3.16 has the correct shock speed, with nearly the entire gradient captured in
one cell thickness. In contrast, Figure 3.17 shows a slightly incorrect shock speed when
using DMFDSFV, as the shock progresses to the left beyond the coalescence point,
even though the discretization is conservative. The incorrect shock speed results from
a non-symmetric distribution of the dependent variable to the left and right of the
shock, caused by the excessive artificial diffusion generated on the grid-misaligned
(left-hand) side.

Contours of the absolute value of the error are presented in Figures 3.18 and 3.19.
Errors from both computed solutions show a lack of symmetry, again reflecting the
grid dependence of the artificial diffusion terms. The error levels from fluctuation
splitting are less than from DMFDSFV. The shock curvature in the DMFDSFV
solution at the coalescing point is clearly visible in Figure 3.19, resulting in significant
downstream errors in the shock location as compared with the fluctuation splitting

€ITorsS.

This problem is repeated on a 25 x 25 mesh with symmetric diagonal cuts, favor-
ably aligned with the advection directions. The fluctuation splitting and DMFDSFV
solutions, Figures 3.20 and 3.21, are in good agreement. Plots of the absolute error
contours, Figures 3.22 and 3.23, show fluctuation splitting to be a little more accurate
than DMFDSFYV for this case.

The final mesh for this case is a truly unstructured triangulation containing
847 nodes and 1617 cells. The nodes are clustered to the outflow boundary, with
an arbitrary bias towards the left-hand side, introduced merely as an additional chal-
lenge for the schemes. The fluctuation splitting solution is presented in Figure 3.24,
showing very accurate and crisp shock resolution and good symmetry in the solution
contours despite the mesh-clustering bias. In contrast, the DMFDSFV solution in
Figure 3.25 has a more-diffuse shock and again an incorrect shock speed, with the
outflow shock offset to the left of z = —%. The DMFDSFV solution is also somewhat

less symmetric than the fluctuation splitting solution.
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Figure 3.19: DMFDSFV, Burgers equation, absolute error.
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Figure 3.20: Fluctuation splitting, Burgers equation,
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Figure 3.21: DMFDSFV, Burgers equation, symmetric mesh.
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Figure 3.23: DMFDSFV, Burgers equation, absolute error.
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Figure 3.25: DMFDSFV, Burgers equation, unstructured mesh.
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3.3 Diffusion

The model diffusion equation, the well known heat equation, is obtained from Eqn. 3.1
when F = 0,

Uy, =V-(uVlU) (3.43)

Lacking cross-derivative terms, the heat equation suffers somewhat as a model for the
Navier-Stokes equations.

Two methods for evaluating the diffusion term are detailed. The finite element
form has a more compact stencil and will be shown to be more accurate. Either dif-
fusion discretization